Linux bash shell

See my Unix info under the CS 330 page. In particular look at the Bourne shell info, http://cis.stvincent.edu/html/tutorials/unix/bshell, a simple text file of information about the shell, and http://cis.stvincent.edu/html/tutorials/unix/bshellref, which contains my tables of Bourne shell items. The tables are especially useful.
1) Managing email address lists:

Suppose that the shortcut file contains one long line like this:

%20joe.anderson@email.stvincent.edu;%20sarah.anderson@email.stvincent.edu;%20brendan.bartko@email.stvincent.edu;%20brian.close@email.stvincent.edu
etc.
We can use the cat command to display the contents on the screen, but pipe its output into the translate utility to replace each semicolon by a newline:

cat shortcut | tr ';' '\n'
The output is:

%20joe.anderson@email.stvincent.edu

%20sarah.anderson@email.stvincent.edu

%20brendan.bartko@email.stvincent.edu

%20brian.close@email.stvincent.edu

etc.

We can pipe the output from that last one into the cut utility to extract characters 4 and following (thus omitting the %20). The command is:

cat shortcut | tr ';' '\n' | cut -c4-
joe.anderson@email.stvincent.edu

sarah.anderson@email.stvincent.edu

brendan.bartko@email.stvincent.edu

brian.close@email.stvincent.edu
etc.
Then we can redirect that output into a file, say a file named s, as follows:
cat shortcut | tr ';' '\n' | cut -c4- > s
To see the file's contents you could use:
cat s

You could also get the email addresses as above, but put the semicolons back in by translating the newlines to ;'s. This would be convenient for an email list in Outlook.

cat shortcut | tr ';' '\n' | cut -c4- | tr '\n' ';'
joe.anderson@email.stvincent.edu;sarah.anderson@email.stvincent.edu;brendan.bartko@email.stvincent.edu;brian.close@email.stvincent.edu

etc.

Any of these could have its output redirected to a file. Here we put the last one into a file named shortcut.new:

cat shortcut | tr ';' '\n' | cut -c4- | tr '\n' ';' > shortcut.new
We can find out how many lines (how many email addresses) we have using the wordcount utility and asking for the number of lines (option -l) in the first file we made, namely s:
wc -l s

(Note that this uses option l, the letter ell, not a digit 1.)
28 s
2) Finding subdirectories:

The following pipeline does a long listing of the files and folders, pipes it into grep to look for a d at the start of each line. (The start of a line is indicated by the ^.)

ls -lA | grep \^d
This gives output such as the following, where only the directories get displayed:

drwx------ 2 carlsond users 4096 Sep 12 2002 .Trash

drwx------ 3 carlsond users 4096 Feb 12 2001 tree

drwx------ 3 carlsond users 4096 Jan 27 11:16 tutors

etc.
The above command could be made into an alias or a script. This could be done by putting the following into my .bashrc file:
alias dirlist="ls -lA | grep ^d"
After doing so, the shell doesn't know about my new alias and can't find it unless I log out and then log back in. An alternative is to source the .bashrc file, which causes it to be reprocessed:

source .bashrc

Once my new alias is recognized, I simply give the following command to see the list of directories in the current location:

dirlist
3) Seeing the path easily:

You can see what locations are in your Linux path by echoing out the value of the PATH variable like this:

echo $PATH

For me, the output is:

/usr/kerberos/bin:/usr/local/bin:/bin:/usr/bin:/usr/NX/bin:/home/carlsond/shell

The locations would be easier to read if each were on a separate line. Thus we try translating each colon to a newline:

echo $PATH | tr ':' '\n'
My output is now:

/usr/kerberos/bin

/usr/local/bin

/bin

/usr/bin

/usr/NX/bin

/home/carlsond/shell

This could be made into an alias or a script. Forexample, we could make it into a showpath alias by placing the following into my .bashrc file:
alias showpath="echo $PATH | tr ':' '\n'"
Then when I want to see my path, I just enter the command:

showpath

I can see how many locations are in my path by using the wordcount utility:

showpath | wc -l

I get the output:

5

4) Get a process list emailed to me:
The following command shows a list of all of the processes running on the Linux system:

ps -aef

The output looks like:

UID PID PPID C STIME TTY TIME CMD

root 1 0 0 Jan22 ? 00:00:00 init [5]

root 2 1 0 Jan22 ? 00:00:00 [migration/0]

etc.

apache 27839 3775 0 07:55 ? 00:00:00 /usr/sbin/httpd

apache 27840 3775 0 07:55 ? 00:00:00 /usr/sbin/httpd

root 29251 3525 0 14:30 ? 00:00:00 sshd: carlsond [priv]

carlsond 29253 29251 0 14:31 ? 00:00:00 sshd: carlsond@pts/1

etc.

I can get the process list emailed to me by piping the output into the mail program:

ps -aef | mail carlsond
If I want a process list mailed to me at a set time everyday, I use:

crontab -e

to edit root's crontab lines to include the following:

30 5 * * * ps -aef | mail carlsond 1> /dev/null 2> /dev/null
This runs the pipeline to mail me a process list at 5:30 every morning. The 1> redirects standard output and the 2> redirects error output. Both are redirected into the "bit bin", /dev/null, which throws away anything sent to it.

To learn what the various fields in a crontab entry mean, give the following command to invoke the manual utility:

man 5 crontab

On shared systems, you might have to be root to use crontab.

5) Start with a pipe to get a long listing, turn it into a list script.
You can get a long listing of the files in the current directory by doing this:

ls -la

Since a long list of files and folders may scroll by, it is better to pipe the output into the more utility, which waits at the end of each screenful of output for you to press the spacebar to go on.

ls -la | more

However, the following bash script is even more convenient. Note that the lines starting with a # are comments. However, the first line, if the # is followed by a !, is used to specify the path to the shell you wish to use. Here it is the bash shell. Note that the $ sign gives the value of a variable. Here it is attached to the * variable which gives all of the command line parameters to this script.
#! /bin/bash
Filename: list
Script to give a convenient long listing of files.
Usage:

list (shows all files and folders in the current directory)

list item item etc. (shows the named items or, if item is a folder, the stuff inside)
ls -la $* | more
To use the script, the file containing it must be made executable. For example:

chmod 700 list

I could then check on my files web and vimrc as well as the stuff in my tree folder as follows:

./list web vimrc tree

-rw-r--r-- 1 carlsond users 2429 Mar 21 2003 vimrc

-rw------- 1 carlsond users 1437 Nov 3 2002 web

tree:

total 44

drwx------ 3 carlsond users 4096 Feb 12 2001 .

drwx------ 103 carlsond users 36864 Jan 30 16:12 ..

drwx------ 2 carlsond users 4096 Jul 25 2002 tree-1.3

Note that the ./ in front of list is there to indicate that list is found in the current directory (indicated by the dot). Without the ./ the list command won't be found unless I put list into one of the directories in my path.

6) Another file listing script

#! /bin/bash

#

Filename: mylist

#

Gives a customized listing of files and directories in the folder indicated by the

one and only command-line parameter.

if [$# -eq 1]

then

 ls -lA "$1" | more

else

 echo "Must have exactly one parameter, the name of the folder to list."

fi
The IF test is used to make sure that the user supplies one command-line parameter. If not, an error message is printed. If the number of parameters is OK, a long listing is done on the items in the folder named by the value in the first (and only) command-line parameter. Note that these parameters are named 1, 2, 3, etc.

7) Convert a file to all upper case
Suppose I have a file test containing:

Start of test.

This is a test of the emergency broadcast system.

End of test.

Then I cat out the file, piping its output into the translate utility, telling it to translate each lowercase letter to the corresponding uppercase one:

cat test | tr '[:lower:]' '[:upper:]'
If I cat out test, I now get:

START OF TEST.

THIS IS A TEST OF THE EMERGENCY BROADCAST SYSTEM.

END OF TEST.
The above pipeline can be put into a convenient script:

#! /bin/bash

Filename: cap
This script capitalizes the text in the file named by the first parameter and
stores it in the file named by the second parameter.
#
cat "$1" | tr '[:lower:]' '[:upper:]' > "$2"
Note that the variable 1 contains the first command line parameter, and 2 contains the second one. The value of each of this variables is found using the $ sign. The quotes around each are there in case the value (the name of a file) happens to contain a space or spaces.

As before you have to give execute permission to the file containing this script:

chmod 700 cap
To use the script to translate to uppercase the data in file test and place the output into a file named test2, assuming that the script cap is in the current directory, use:

./cap test test2

If instead, you have a subfolder named scripts within your current location, in which you have the cap script and others, you could use the following command:

scripts/cap test test2

8) A script to find all html files in a target folder
#! /bin/bash

#

Filename: findhtml

#

Lists all html files in the directory given as the one and only command-line

parameter. Also gives the count of how many such html files there are.

temp="/tmp/findhtml.$$" # The $$ gives the process ID number.
if [$# -eq 1]

then

 if [-d "$1"]

 then

 echo -n "Number of html files found was "

 ls -l "$1"/*.html | tee $temp | wc -l

 echo "Listing of the html files:"

 cat $temp

 rm "$temp"

 else

 echo "$1 is not a directory"

 fi

else

 echo "Must have exactly one parameter, the name of the folder to examine for html files."

fi
This script uses the variable temp to hold the name of the temporary file that it will use. That filename contains the process ID number on the end of it to be sure that the name will not conflict with the name of someone else's temporary file.

The first IF test checks to see that the number of command-line parameters (given by the # variable) is one. The second IF test checks the value of the first (and only) command-line parameter to see if it represents a directory (the -d test).

The echo commands are used to print messages to the screen. Normally echo goes to a newline after printing the message, but the -n suppresses the newline.

The tee utillity sends identical copies of its input to both standard output and to the filename given after the tee. Thus in this script the input to tee (which is a list of html file information) is sent to the temp file and redirected into the word count program wc. Here wc has option -l, (using the letter l, not the digit 1), which tells wc to count the number of lines. Word count prints this number, which amounts to the number of html files found, to the screen. Since the temp file contains the listing of html files, just using cat on it displays the listing on the screen. At the end, the temp file is removed with the rm command.
9) A simple use of grep

Try the following at the Linux command line:

grep carlson /etc/passwd

You should get output similar to this:
carlsond:x:503:100:Br. David Carlson:/home/carlsond:/bin/bash

carlsone:x:512:100:David E. Carlson:/home/carlsone:/bin/bash

The grep utility is a pattern matcher. Here it Is used to find lines of data in the password file that contain the string carlson. There are 2 such lines, indicated 2 accounts using that name.

10) Displaying the contents of a text file

It is useful to have a script to display the contents of a text file. You might wonder why this is so, when the builtin command cat already does this. The problem is that cat tries to display any file, including ones that are not text files. If you cat out a compiled program, it will likely mess up your terminal session, so that ordinary text appears as gibberish. The fix is to log out and back in again.

How much better it would be to use a script that is smart enough to check first that it has a text file before trying to display it. That is what the following script does. It uses the file utility to check what type of file it has before attempting to display its contents.

You can try the file command at the command prompt like this:

file /www/index.html

file /etc/passwd

file mylist (This assumes that you are in the location where your mylist script is.)

file /bin/bash

file /www

Here is the script:

#! /bin/bash

#

Filename: showtext

#

Shows the contents of the textfile given as the one and only command-line

parameter. Gives an error message if the file is not text.

if [$# -eq 1]

then

 if [-r "$1"]

 then

 result=`file "$1" | grep text`

 if [-z "$result"]

 then

 echo "File $1 is not a text file"

 else

 cat "$1"

 fi

 else

 echo "No read access to file given: $1"

 fi

else

 echo "Must have exactly one parameter, the name of the text file to display."

fi
As in the previous script, the first IF test checks to see that the number of command-line parameters is 1. The second IF test checks (with the -r test) to see that the script has read access to the file given as the first (and only) command-line parameter.
file "$1" | grep text runs the file command on the file named by the command-line parameter. Its output is piped into grep, which looks for the string text. If text is not found, the output of the grep will be empty. If the string text is found, the matching line or lines is the output.

Note the backquotes around this pipeline. That causes the output from the pipeline to replace this command right here in the script. In essense, grep's output (either empty output or lines containing the string text) is assigned into the variable result. The third IF tests the string result to see if it is size zero (-z test). The empty string is a sign that the string text was not found and that we should not try to display this file. Otherwise, text was found and we can go ahead and cat out the contents of the file.

11) Listing the users on the system
The following lists all the ordinary users on the system, those in group 100 (the users group). It also omits users who don't have a login shell, as those accounts are not for ordinary users.

#! /bin/bash

#

Filename: listusers

#

Gives a list of the names of all users in the users group (group 100).

grep ":100:" /etc/passwd | grep -v nologin$ | cut -d ':' -f 5
You can run at the command line the first part of the pipeline in the above script:

grep ":100:" /etc/passwd
The output shows lines like the following, all showing the users group (100):

games:x:12:100:games:/usr/games:/sbin/nologin
carlsond:x:503:100:Br. David Carlson:/home/carlsond:/bin/bash

carrd:x:504:100:Daniel Carr:/home/carrd:/bin/bash
That type of output is piped into the grep. With the -v option, grep omits lines that match what follows. In this case, that means omitting lines with nologin at the end of the line (as $ matches the end of the line). That's the purpose of:

grep -v nologin$
The output of that grep (if the input is the above 3 lines) would be:

carlsond:x:503:100:Br. David Carlson:/home/carlsond:/bin/bash

carrd:x:504:100:Daniel Carr:/home/carrd:/bin/bash
Finally, the output of that last grep is piped into cut -d ':' -f 5. The cut command can be used to cut out (extract) a certain field or certain columns. In this case, cut gives us the 5th field, where fields are delimited by the : character. Looking at the above 2 lines of output, we see that the 5th field gives the full name of the user. Thus, the output for the entire pipeline, assuming we only had the few lines of output above, would be:
Br. David Carlson

Daniel Carr
12) Finding the permissions on a particular file
#! /bin/bash

#

Filename: findperms

#

Displays the permissions on the file given as the command-line parameter.

if [$# -ne 1]

then

 echo "One parameter needed: the name of the file whose permissions you want to see."

 exit 1

fi

if [! -f $1]

then

 echo "$1 is not a regular file."

 exit 2

fi

ls -l "$1" | cut -d ' ' -f 1 | cut -c 2-

exit 0
First, this script checks the # variable to see if the number of command-line parameters is not 1. If so, the user of the script used it incorrectly. An error message is printed and we exit the script with a return code of 1. (A non-zero code indicates an error, while 0 indicates normal exit.)

Next, the script checks to see if the $1, the value of the first command-line parameter, is not a regular file. The ! is a Boolean not and the -f test checks to see if we have a normal file (and not a directory, a link, or something else). If we do not have a normal file, an error message is printed and we exit with a return status of 2.

Finally, if we get past the 2 IF tests, we list the file given by $1, the value of the first parameter, and pipe that into cut to extract the 1st field (delimited by space characters). You can try something like that at the command line:

ls -l /www/index.html

The output is:

-rwxr--r-- 1 root root 7490 Jan 19 17:15 /www/index.html

Next try:

ls -l /www/index.html | cut -d ' ' -f 1

Now the output is:

-rwxr--r--

Finally, the entire pipeline from the script can be tried at the command line:

ls -l "$1" | cut -d ' ' -f 1 | cut -c 2-

This cuts out columns 2 and following from the previous output. That is, it omits column 1 (the initial dash), to give:

rwxr--r--

Now we see precisely the 3 groups of 3 permissions, which is what we wanted from this script.
Note that after this script finishes executing, you can check the exit status by echoing the value of the ? variable. Try it like this:

./findperms /www/index.html

echo $?

After findperms gives its output and you do echo $? you get:

0
(which is the normal exit status)

However, if you try:

./findperms /www/abcdef
echo $?

After you get an error message from findperms, the echo $? gives:
2
(the exit status we used when the 1st parameter was not a normal file)

Finally, try:

./findperms a b c
echo $?

You get the error message from findperms about the number of parameters and then the echo $? gives:

1
(the exit status for an incorrect number of parameters)

13) Second version of findhtml
#! /bin/bash

#

Filename: findhtml2

#

Lists all html files in the directory given as the one and only command-line

parameter. Also gives the count of how many such html files there are.

temp="/tmp/findhtml2.$$"

if [$# -eq 1]

then

 if [-d "$1"]

 then

 ls -l "$1"/*.html > $temp

 num=`cat $temp | wc -l`

 if [$num -eq 0]

 then

 echo "No html files were found in directory $1"

 else

 echo "Listing of the html files in directory $1 finds $num files:"

 while read line

 do

 echo "$line"

 done < $temp

 fi

 rm "$temp"

 else

 echo "$1 is not a directory"

 fi

else

 echo "Must have exactly one parameter, the name of the folder to examine for html files."

fi
This script begins by setting up variable temp to hold /tmp/findhtml2.$$ as the name (and path) for a temporary file. The $ variable holds the process ID for the script as it runs, so if that process id happens to be 582, the name of the temp file would be /tmp/findhtml2.582 and can't conflict with any other temp file (if appending the process ID is always used and temp files are removed once their processes have ended).

Next we have the usual check on the # variable to see how many command-line parameters there are. Next is a check to see if 1, the first parameter, contains a directory (the -d test). If so, a long listing of the html files found in that directory is made and written to the temp file using:

ls -l "$1"/*.html > $temp

The next line is used to find the number of these html files. The contents of the temp file are cat-ed out and piped into word count with the -l option to count the number of lines. That gives the number of html files. Since the command is inside of back quotes, the output (that number) replaces the command. That number is then assigned into the variable num. Here's the command:

num=`cat $temp | wc -l`
Next there is an IF test with the condition [$num -eq 0] to check to see if the number of html files is zero. If so, an appropriate message is printed. If not, we want to print the contents of the temp file. A quick way to do that would be:

cat $temp

However, the script shows a more complicated method, that reads one line of the temp file at a time, echoing each line to the screen:
while read line

do

 echo "$line"

done < $temp

Note the syntax for the WHILE loop. The positions of the DO and DONE marking the start and end of the loop body are essential. The read test is used to control the WHILE loop. If the reading of a value into the variable line succeeds, the test is true and the loop goes on. If the read fails, the loop halts. Ordinarily, a read reads from the keyboard, but this loop has its input redirected to come from the temp file. That's the meaning of the < $temp. Thus the loop reads a line of data from the temp file, puts it into the variable line, loops around to read the next line from the temp file, puts that data into line, etc. until no more data can be read.

This is a very useful loop pattern, though it was not really needed in this particular script.

Finally, note that the rm "$temp" is used to remove the temp file once we are finished with it.

14) Third version of findhtml
This version is used to find all html files in a certain directory that contain within them a particular string. For example, I could use the following command to find all files in the /www/html folder that contain the word Education (including the capital E):

./findhtml3 /www/html Education

Listing of the matching html files in directory /www/html:

/www/html/cs.html

/www/html/ed.html

Number of matching files found: 2
Take a look at the script to see how we achieve this:

#! /bin/bash

#

Filename: findhtml3

#

Lists those html files in the directory given as the first command-line parameter that

contain the string specified as the second command-line parameter. The script skips

html files that it cannot read. Also gives the count of the number of matching html files.

temp="/tmp/findhtml3.$$"

if [$# -ne 2]

then

 echo "Need 2 parameters, the directory to search, and the string to find in the html files."

 echo "Usage: findhtml3 <directory> <string>"

else

 if [-d "$1"]

 then

 count=0

 ls "$1"/*.html > $temp

 echo "Listing of the matching html files in directory $1:"

 while read line

 do

 if [-r "$line"]

 then

 nummatches=`grep "$2" "$line" | wc -l`

 if ["$nummatches" -ne 0]

 then

 ((count = count + 1))

 echo "$line"

 fi

 fi

 done < $temp

 echo "Number of matching files found: $count"

 rm "$temp"

 else

 echo "$1 is not a directory"

 fi

fi
By now you know how to read most of this script. The checking of the # variable to see that the number of parameters is right is familiar. The -d test to see if the first parameter holds the name of a directory is also one that you have seen.
A new feature is doing arithmetic. We start with count=0. Note that you cannot put spaces around that = sign. In the following WHILE loop, every time we find a matching html document, we add 1 to count using this:

((count = count + 1))
Thus we can echo out $count, the value of count, when the loop is over and so show the user how many matching html files we found.
The following line is used to produce a listing of the names of all html files in the desired directory:

ls "$1"/*.html > $temp
You can try something similar at the command line, perhaps without redirecting the output. For example, enter this command:

ls /www/*.html

The command in the script redirects all of those names of html files into the temp file. The script goes on to use the same type of WHILE loop as in the findhtml2 script to read one line of the temp file at a time. Each such line is simply the name of an html file (with any path in front of the filename). The script then checks each html filename (found in $line) to see if the script has read access to it (the -r test). The script can only check to see that the target string is or is not present in a file that it can read.

The script then uses the following grep command to look for the target string given as the 2nd parameter in the html file given in the line variable:

grep "$2" "$line"
That grep command outputs all matching lines of the file. The script pipes this output into wordcount (wc -l) to count how many lines of output we get. This entire command is contained inside of back quotes, which causes the output (the number of matching lines) to replace the command. This number is assigned into the nummatches variable.
If $nummatches is nonzero then we have an html file that we want to report. The script then echoes out the value of line, $line, so that the user can see the name of that file. The count is also incremented by 1 since we found one new matching file.

15) vartest
This shell script was used to illustrate the -z test for a zero-size (empty) string. It also shows how to use the test utility to write an IF or WHILE test instead of using [-z "$myvar"], as in previous examples. The /bin/sh is the path for the Bourne shell, but on most systems now it is a symbolic link to /bin/bash, the Bourne-again shell (bash). We could replace the sh by bash.
#! /bin/sh

#

Filename: vartest

#

Programmer: Br. David Carlson

#

Date: January 22, 1995

#

Illustrates use of test -z to see if a string variable is empty.

#

myvar=hello

if test -z "$myvar"

then

 echo empty

else

 echo nonempty

fi

Now try again with the empty string:

myvar=

if test -z "$myvar"

then

 echo empty

else

 echo nonempty

fi
The output of this script should be obvious, namely:

nonempty

empty

16) teststatus
The following script calls another script, teststatus.aux, and then checks the status returned by that second script. Recall that the variable ? contains the returned status from the last command (or script) that was executed.

#! /bin/bash

Filename: teststatus

#
echo "teststatus runs"

teststatus.aux # call the teststatus.aux script
if [$? -eq 2]

then

 echo "status is 2"

else

 echo "no match found"

fi

exit 0
Here is the helping script:

#! /bin/bash

Filename: teststatus.aux
#
echo "teststatus.aux runs"

exit 2
The output, as you would predict, is:

teststatus runs

teststatus.aux runs

status is 2

Thus one script can call upon several helping scripts, as needed, and check the status number returned by them so as to decide what action to take in the main script (based on an IF test, most likely).

17) repeatshift
The following script illustrates shifting of the command-line parameters:
#! /bin/bash
Filename: repeatshift

#
Script to repeatedly shift the commmand-line parameters

showing before each shift command-line parameter 1.

This continues until there are no parameters left.

#
while [$# -gt 0]

do

 echo "$1"

 shift

done
Shift throws away the value of parameter 1 and slides each other parameter value down into the parameter 1 lower. That is, what's in parameter 2 is copied into parameter 1, then what's in parameter 3 gets copied into parameter 2, then parameter 4 is copied into parameter 3, etc. The above script continues to loop as long as $#, the number of parameters, is greater than zero. Here is the output from the script, when run with the 4 parameters shown:

./repeatshift one two three four

one

two

three

four

You should also know how to write an extended IF. Here is a code sample to show you the syntax, including the optional ELSE clause. Note that bash is often fussy about spacing. It is often necessary to have spacing around the [and] and perhaps around the comparison operators that you might use in a condition inside of the square brackets. The elif is what bash uses for ELSE IF.

if [num –gt 24]

then

 echo "big number"

elif [num –ge 8]

then

 echo "medium number"

elif [num –ge 0]

then

 echo "small number"

else

 echo "negative number"

fi

Next are some scripts that are useful in Linux system administration, such as the following:

18) tarball Note that this script illustrates the use of an extended IF.
#! /bin/bash
Filename: tarball

#
The first parameter is the name for the tarball, 2nd is the dir to tar up.
#
tar -c -p --atime-preserve --same-owner -f $1 $2
The tar command copies a collection of files (here, everything in the directory given by the 2nd parameter) into one large archive file. That file can also be compressed (for example, with gzip). The advantage of the tarball script is that it contains within it reasonable options for the tar command so as to produce a good tarball. Tarballs are often used to transfer a large number of files from one server to another. You can use man tar to find out what each option to tar means.
19) massmail
#! /bin/bash

#

Filename: massmail

#

Programmer: Jasen M. Lentz

#

Date: November 19, 1996

#

Updated August 11, 2002 by Br. David Carlson

#

Purpose: To mass mail a file to a long list of users without a large header file
with the email address of each user.

#

if [$# != 2]

then

 echo "Two parameters needed."

 echo "Syntax: massmail <file_to_send> <file_of_ids>"

 exit 1

elif [! -r "$1"]

then

 echo "Cannot read file" "$1"

 exit 2

elif [! -r "$2"]

then

 echo "Cannot read file" "$2"

 exit 3

else

 echo "Please enter a subject for this message"

 read subject

 while read line

 do

 mail -s "$subject" "$line" < "$1" > /dev/null

 echo "Mailing to $line"

 done < "$2"

 echo "Mail sent..."

fi
This script is used to email the same file to multiple individuals, but to do so with individually addressed emails to each, not one email to the whole set of people. The script takes two parameters, the name of the file to send, and the name of a file containing the addresses to mail to, one per line. Thus we might use the script like this:
massmail msg list

Here, msg is a text file containg the body of the email message, while list is a text file containing the addresses to be sent to. For example, list might contain lines like this:

carlsond

martincc

david.carlson@email.stvincent.edu
sunshine@gmail.com
The first 2 lines are local addresses on the Linux server (for local email). The last two are complete email addresses.

The script does the usual check to see that the number of parameters is correct. It also verifies that it has read access (-r test) to both files. If it gets past those, it prompts the user for the subject of the email and reads that string into the variable subject by using:

read subject
Note that read reads from the keyboard unless redirected input is used. The WHILE loop itself does have its input redirected to come from $2, the name of the file containing the list of addresses. Thus, each time around this loop we read a new address into the line variable. The script then uses the following to send the email to that address:

mail -s "$subject" "$line" < "$1" > /dev/null
Note that the -s option to the mail command is used to specify the subject of the email. The item after the subject (i.e. the $line) is the email address to send to. Input to mail is redirected to come from the file named by parameter 1, the file containing the text of the email. Any output produced by this mail command is redirected to the bit bucket, /dev/null. (That is, it is thrown away.)

20)
getitem

#! /bin/bash

#

Filename: getitem

Programmer: Br. David Carlson

#

Date: Jan 21, 2013

#

Searches the files named in the file of filenames given as the 1st command-line parameter

for the item named as the 2nd command-line parameter. Example:

#

getitem FileOfFilenames birthday

if ["$#" -ne 2]

then

 echo "Error: Two command-line parameters needed"

 echo "Usage: getitem <FileOfFilenames> <Item>"

 exit 1

fi

if [! -r "$1"]

then

 echo "Error: File $1 does not exist or is not readable."

 exit 2

fi

while read line

do

 grep -H "$2" "$line"

done < "$1"

exit 0
You should be able to read that script pretty well on your own at this point. Do man grep to find out what the -H option does, however.
21)
Extras

We could also look at the account creation scripts to get the flavor of what can be done with scripts to make system administration easier. The particular makeuser script we have uses Red Hat's built-in useradd command to create a new account with all of the folders, etc. that we want it to have. We also have a MakeUsers script that calls makeuser inside of a loop in order to create multiple accounts, using data supplied in a text file.
