First Mic Examples

What do Mic-1 microinstructions look like? They will end up being 32-bit long binary numbers, which are hard to read. However, we will also use a pseudocode notation for them that looks a bit like Pascal or C. Here are some examples, with explanations added:

d := ac;

This means to copy the value in the accumulator into register D.  How would we do this?  We would have to send the AC value around the data path unchanged.  The only ALU function for passing an input unchanged is for the left (A) input.  Thus we must send the AC value down the A bus, latch it, send it throught the AMux and then through the ALU and shifter unchanged.  This value then goes up the C bus and must be stored in register D.

sp := sp + 1;

Obviously this increments the value in the stack pointer register (SP).  To do this, the +1 constant and the SP value have to sent down the A and B buses (one on each).  It does not matter for addition which goes down which bus.  The ALU must be told to add and the shifter not to shift.  The result, which is on the C bus, must then be stored back in the SP register.

ac := band(a, smask);

The band is Andrew Tanenbaum’s notation for a boolean AND.  The values in the A and SMASK registers are ANDed and the result is placed in the accumulator.  We start out as with addition: send the 2 values down the A and B buses.  Then we tell the ALU to do a boolean AND and the shifter not to shift.  The result is taken from the C bus and stored into the accumulator (AC).  Let’s do an example.

The SMASK always contains:
0000 0000 1111 1111

Suppose register A contains:

0000 1010 0000 0110

ANDing these 2 numbers gives:
0000 0000 0000 0110

Note that the effect is to mask off the first 8 bits of the A value.

b := inv(f);

The inv means “inverse” and is Tanenbaum’s notation for a boolean NOT.  That is, it means to reverse all of the bits.  Since our ALU can only do this for it’s A input, we must send the register F value down the A bus.  It does not matter what is on the B bus, as that value will be ignored.  We instruct the ALU to compute not(A) and the shifter not to shift.  The result is copied from the C bus into the B register.  Here is an example:

Suppose the F register contains:
0000 1010 0000 1111

The B register would then get:
1111 0101 1111 0000

tir := lshift(tir + tir);

This one is a little tricky.  First we add the value from the TIR to itself.  Mathematically that doubles the value, which is the same as a left shift by 1 bit of the binary number.  Of course, we may get overflow in some cases, so that the result doesn’t really represent twice the number.  However, tir + tir is still a useful way to left shift the value even in those cases.  The lshift means to tell the shifter to left shift by 1 bit.  Thus overall the original TIR value is left shifted by 2 bits.  

To start this instruction off we would, of course, send the TIR value down both the A and B buses.  Then we would tell the ALU to add and the shifter to left shift by 1 bit.  The result is stored from the C bus back into the TIR.  Here is an example:

Suppose the TIR contains:

1011 0000 0000 0000

Then the ALU output would be:
0110 0000 0000 0000

(left shifted by 1 bit)

The shifter output would be:

1100 0000 0000 0000

(left shifted by 1 more bit)

goto 16;

// unconditional jump in the microcode

This would do a jump to line 16 in the microcode.  We will see more about this type of instruction later.

tir := lshift(tir + tir); if n then goto 22;   // which bit of the original tir value decides the jump?

This is the same as the above example which left shifted the TIR value by 2 bits, except that it also has a conditional jump.  Remember that any jump is done in the last subcycle of the microinstruction.  The “if n” part means to jump if the ALU output is negative (as indicated by a 1 = true on the N line from the ALU).  In the above example, the ALU output was the postive number 0110 0000 0000 0000, so that a 0 = false would be on the N line and no jump would be done.  This is tricky in that the conditional jump is decided by the bit 2nd from the left in the original number, not by the leftmost bit of the original or the leftmost bit in the final TIR value. Here is another example:

Suppose the TIR contains:

0101 0000 0000 0000

Then the ALU output would be:
1010 0000 0000 0000

(left shifted by 1 bit)

The shifter output would be:

0100 0000 0000 0000

(left shifted by 1 more bit)

Since the ALU output has a leading 1, it represents a negative number.  There would be a 1 = true on the N line, and the jump to line 22 in the microcode would be taken.

alu := ac; if z then goto 13;

// just means pass the value through the ALU to test it

This notation seems strange.  The ALU is not a register and cannot store a value.  This is Tanenbaum’s way of saying that we want to pass the accumulator value through the ALU but not store the output anywhere.  The whole purpose of this is just to set the N and Z values coming out of the ALU so that we can decide whether or not to do the conditional jump on this basis.  For example, if the ALU contains 0000 0000 0000 1011, then the Z line would have on it 0 = false since the value sent through the ALU is not zero.  Thus the jump would not be done.

Typical way to do a write to memory (assumes it takes two cycles of asserting the WR signal due to the fact that main memory is slower than the CPU):

mar := d; mbr := ac; wr;
// notice that we can do all 3 things in the same cycle

wr;



// a second microinstruction just to continue to assert WR

Let’s make the discussion of this write to memory concrete by assuming that register D contains 40 and the AC contains 6 (both in binary of course).  The first instruction must load the MAR with the value of D.  The only bus into the MAR comes from the B latch.  Hence the 40 from D must be sent down the B bus.  The 6 is simulaneously sent down the A bus.  This works just right because the A bus value can be sent through the ALU unchanged.  We tell the shifter not to shift and then store the output (6) in the MBR.  After 2 complete cycles of asserting the write signal (WR), the 6 is guaranteed to have been written to main memory location 40.

Typical way to read from memory (assumes it takes 2 cycles of asserting the RD signal);

mar := ac; rd;

rd;

ac := mbr;

Overall these instructions copy a memory address into the MAR, read a value from that address in main memory, and then copy the value read into the accumulator.  Let’s assume that the AC contains 42 and that main memory location 42 contains –3.  The first microinstruction would have to send the 42 down the B bus and over into the MAR.  By the end of the second microinstruction, the –3 is guaranteed to have been read in from main memory and is sitting in the MBR.  The last microinstruction sends the –3 from the MBR, through the AMux, unchanged through the ALU and shifter, and finally stores it in the AC.

We will worry later about how to encode each of these as a 32 bit binary number.

