Pushdown Automata
A pushdown automaton consists of:

1)
a stack

2)
a finite set of states, one of which is the start state (labeled S0) and one or more of which are final states (which we indicate by double circling each final state)

3)
a finite alphabet of symbols

4)
a finite set of transitions of the form:

[image: image1]
i is the input symbol

s is the symbol popped from the stack

h is the symbol pushed onto the stack

Note that the empty symbol λ is allowed as an input symbol.

Both s and i must match the current situation for this transition to be taken.

We typically push the # symbol onto the stack to mark the bottom of the stack. That way, when we eventually pop the #, we know that the stack is then empty.

A pushdown automaton can be used as a language acceptor. We say that a string is accepted by the machine if the string takes the machine to an accept state. We also require that the resulting stack be empty for the string to be accepted. (Some books allow stuff to remain in the stack.)
Example pushdown automaton:

[image: image2]
Let's determine what strings are accepted by this machine:
First we see that 01 is accepted:
From S0 we take the only transition by consuming no input, popping nothing from the stack, and pushing # onto the stack. Because the first input symbol from the string is 0, we follow the loop, popping nothing from the stack, and pushing 0. It is clear that at this point we are in state S1 with the following on the stack:

[image: image3]
From S1 we take the only transition by consuming the bit 1 from the input string, popping the 0 from the stack, and pushing nothing onto the stack. At this point we are in state S2 with the following on the stack:

[image: image4]
Since we have now consumed all of the input string, the 01, we cannot take the loop. Our only choice is to take the transition to S3 by consuming no input, popping the # from the stack, and pushing nothing onto the stack. We are now in state S3 (which is a final state since it is double circled) and the stack is empty. Thus string 01 is accepted.

In a similar way you can show that the string 0011 is accepted by this machine.

So is any string of the form 0n1n where n is any positive integer.

Note that the string 001 is not accepted.
If we try 001, it takes us to state S1 where we consume the two 0's and end up with the following stack:

[image: image5]
By consuming the 1, we reach state S2 with the following remaining on the stack:

[image: image6]
But then there is no transition from this state that we can use. We have no input left, and the only transition that consumes no input needs to pop a # from the top of stack. However, we have 0 on the top of the stack. We are stuck. Our machine does not accept the string 001.

It can be shown that the language accepted by this pushdown automaton is precisely the set of strings { 0n1n | n is a positive integer }.

Homework problem: What language is accepted by the following pushdown automaton?

[image: image7]
Theorem: The languages accepted by the non-deterministic pushdown automata are precisely those languages generated by context-free grammars.
Thus there is a close connection between this type of grammar and this type of automaton.

Note that there are some context-free languages that are not accepted by any deterministic pushdown automaton.

Main Application of Pushdown Automata:

We know from the above theorem that for any context-free language there must be a nondeterministic pushdown automaton that accepts exactly that language. How do we create this pushdown automaton?
Luckily, there is a standard method to construct the desired machine. Let's assume that our context free grammar is for a programming language. Thus the overall goal of our machine is to show that a given hunk of text is (or is not) a valid program in this language. Then we begin with the following outline for our pushdown automaton and add at state S2 a loop for each grammar rule.

[image: image8]
To be specific, for each grammar rule of the form A (x, where A is a nonterminal and x is any string of terminal and/or nonterminal symbols, we add at S2 a loop with the transition λ, A; x and for each terminal symbol s we add a loop with the transition s, s; λ. Note that it is understood that when we use a transition of the form λ, A; x, we push the symbols of string x onto the stack in backwards order. That is, we take the symbols from x in right to left order.
Example of the construction of a pushdown automaton to accept a context-free language:

Suppose we have the following context-free grammar:
<program> (<block>

<block> (begin <assignment> end

<assignment> (identifier := number

We will assume that identifier and number are terminal symbols, items that we readily recognize by some other means. The other terminal symbols used here are :=, begin, and end. Note that := is seen as a single "symbol". The nonterminal symbols are in angle brackets.

The desired pushdown automaton that recognizes exactly the language generated by this grammar is as follows:

[image: image9]
Example of a program accepted by this pushdown automaton:
begin

 x := 24

end

We will assume that we use a tokenizer and that it recognizes x as an identifier and 24 as a number. Thus we can take identifier and number as terminal symbols.

Here is a trace showing that the above 3-line program is accepted by our machine. Each picture shows the current state and the stack.

[image: image10]
In the remaining pictures of the trace, note that x in the input matches with identifier and 24 matches with number.

[image: image11]

[image: image12]
Since we have reached a final state and an empty stack, the program has been accepted by our machine as valid. The parse tree could be constructed as we go through the above algorithm. The final parse tree would look like this:

[image: image13]
i, s; h

Sn

Sm

S1

S0

λ, λ; #

start

0, λ; 0

1, 0; λ

S2

1, 0; λ

S3

λ, #; λ

#

#

0

#

0

0

#

0

S2

1, 2; λ

S1

2, λ; 2

0, λ; λ

0, λ; λ

start

S0

S3

λ, #; λ

S2

λ, λ, <program>

λ, #; λ

S3

start

S1

S0

λ, λ; #

S2

λ, λ, <program>

start

S1

S0

λ, λ; #

λ, <program>; <block>

:=, :=; λ

end, end; λ

λ, <block>; begin <assignment> end

number, number; λ

identifier, identifier; λ

begin, begin; λ

λ, <assignment>; identifier := number

 begin

<assignment>

S2

 end

 #

S2

 <block>

#

S2

<program>

#

S1

#

identifier

x

<number>

S2

 end

 #

S2

<number>

 :=

S2

 end

 #

S2

 #

 end

<assignment>

<number>

 :=

<identifier>

 end

 #

end

S3

begin

<program>

S2

<assignment>

#

<block>

 end

 #

S2

:=

number

24

