
Functions, Parameters, and Stack Frames in Mac1 Machine LanguagePRIVATE

Here is an outline of how function main would call another function, complete with the passing of parameters, allocation of space for local variables, and the return of an answer by means of a reference parameter. Note carefully the patterns used for each feature and follow them exactly when translating a program in a high-level language into machine language. In other words, we are trying to learn the patterns that a simple compiler would use to compile high-level language code into machine language. This is not the place for creativity, innovation, and optimization of code. This is all about learning and showing off the basic patterns. It is essential to draw an accurate picture of the run-time stack in order to get the Mac1 code right.
0: ; The main function starts here. It can use direct addressing.
1: ; It's first job is to save space for it's local variables and to put
2: ; any needed values into those variables. Thus you see code such as:
3: DESP 2 ; This would handle 2 variables.

4: LOCO 4

5: STOD 68 ; This variable, perhaps named x, now contains 4.

6: LOCO 9
7: STOD 67 ; This variable, perhaps named y, contains 9.

8: ; When main calls a function, it is main's task to push the parameters
9: ; onto the stack, in order (from left to right, we assume). Note well

10: ; that a value is pushed for a value parameter and an address for a

11: ; reference parameter. If the number of parameters is k, there will be

12: ; k pushes before the function call. Example with k = 2, the first

13: ; parameter is a value parameter, and the second parameter is a

14: ; reference parameter:

15: LODD 68 ; look up the value of x

16: PUSH ; put the first parameter onto the stack

17: LOCO 67 ; load the address of y
18: PUSH ; we pushed a value, then we pushed an address
19: CALL n ; where n is the line number where the other function begins
20: INSP k ; drop the k parameters (since we had k = 2, use INSP 2)
21: ; Thus the first job after returning from the call is to drop parameters
 ; The rest of the code for function main is here.
 HALT ; Then we halt the program.
n: DESP m ; start of the other function, save room for m local variables

 ; The rest of this function's code goes here.
 ; Important: Only main can use direct addressing. This other function

 ; (and any other functions) MUST use local addressing instructions to

 ; retrieve values from or store values into its stack frame. This is

 ; because this function could be located anywhere on the stack,

 ; depending on what sequence of function calls ended by calling this

 ; particular function. The machine code for this function has to work

 ; correctly no matter where its stack frame is on the stack. Local

 ; addressing instructions such as STOL, LODL, ADDL, and SUBL are perfect

 ; for this. Do not use STOD, LODD, ADDD, or SUBD. (The one case where
 ; direct addressing would be allowed is to access global variables or

 ; global constants, but global variables are dangerous and should be

 ; avoided. We will also not use global constants.

 ; Let's assume that we have placed into the AC register the answer that

 ; we want to send back by way of the reference parameter, which

 ; was our second parameter. Here is the pattern to return that answer:
 PUSH ; temporarily push the answer onto the stack

 LODL r ; where r is the number of items from top of stack to that

 POPI ; reference parameter. In our example above, this would be 67

 ; that is loaded into the AC. Then POPI pops the answer into

 ; main memory location 67.
 INSP m ; drop the local variables right before returning
 RETN ; return to the line after the CALL (since call pushed PC value)
Example:

Suppose we have the following to implement in Mac1 machine language:

void compute(int x, int y, int & result, int & top)

 {

 int temp, n, m;

 temp = x;

 ... rest of function code

 result = temp;

 }

void main(void)

 {

 int a, b, c, d;

 a = 13;

 b = 45;

 ... other code ...

 compute(a, b, c, d);

 ... rest of main function code

 }

The corresponding Mac1 code would be:

0:
DESP 4
; save room for main's 4 variables

1:
LOCO 13

2:
STOD 68
; put 13 into a

3:
LOCO 45

4:
STOD 67
; put 45 into b

5: ... other code ...

6:
... other code ... then set up to call our function:

7:
LODD 68
; use the value for value parameter x

8:
PUSH

9:
LODD 67
; use the value for value parameter y

10:
PUSH

11:
LOCO 66
; use the address for reference parameter result

12:
PUSH

13:
LOCO 65
; use the address for reference parameter top

14:
PUSH

15:
CALL 20
; call the function compute (starting on line 20)

16:
INSP 4
; main removes the 4 parameters from the stack
17:
... rest of main function code

18:
... rest of main function code

19:
HALT

; end of main function

20:
DESP 3
; Start of compute; save room for the 3 local variables

21:
LODL 7
; get the value of parameter x

22:
STOL 2
; ... and store it in local variable temp

23:
... rest of function compute's code

24:
... rest of function compute's code

25:
... rest of function compute's code

26:
LODL 2
; load AC with value from temp

27:
PUSH

; push it temporarily

28:
LODL 6
; load AC with reference parameter result (address)

29:
POPI

; pop answer from the stack into mem[address]

30:
INSP 3
; drop the 3 local variables

31:
RETN

; return to the main function (at line 16, of course)

Not shown is how to handle returning a value in a function name. That could be done by having the calling function add a local variable, temp let's call it, to hold the returned value. Then the function that is called could add a reference parameter, perhaps also called temp, that contains a pointer to the previous temp. Thus, we basically use the reference parameter mechanism as above.

Drawing of the run-time stack:
Draw an accurate picture of this and consult it carefully when creating the above code.

|

|

|-----------|

 56
|
13
|
temporary place for the answer

|===========|

 57
|

|
local variable m

|-----------|

 58
|

|
local variable n

|-----------|

 59
|
13
|
local variable temp

|-----------|

 60
|
16
|
return address

|-----------|

compute's stack frame
 61
|
65
|
reference parameter top

|-----------|

 62
|
66
|
reference parameter result

|-----------|

 63
|
45
|
value parameter y

|-----------|

 64
|
13
|
value parameter x

|===========|

 65
|

|
d

|-----------|

 66
|

|
c

|-----------|

 main's stack frame
 67
|
45
|
b

|-----------|

 68
|
13
|
a
